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Abstract

The open ring line that presents low losses is studied theoretically by
mean of Hankel transform. Electromagnetic field, stored energy, power flow and
dispersion relation are calculated. Measurements have perfectly corroborated

theoretical results.

Introduction

The study of low loss transmission lines has
been developed in the course of the last yearsl_2 owing
to possible practical applications railway traffic
control, railway obstacle detection and telecommunica-—
tions. The ring line described in reference’ presents
losses less than 5 db/km in L band. This paper presents
the theoretical analysis of this line consisting of
equally spaced metallic rings (figure 1).
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Fig. 1

Open ring line (2a = 7.05 cm,
H=3ocm, w=0.5 cm)

In order to simplify the analysis, we assumed
the rings to be infinitely thin perfectly conducting
tapes whose width w i1s small compared with the line
pitch H. The ring line whose axis 1s taken to coincide
with the z axis is assumed to be infinite in extent.
The fields are produced by azimuthal currents which
only flow along the rings. In the cylindrical coordi-
nate system (r, 8, z) the current densities can be
written in the form :
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which determines current and
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A is a constant
field intensity.

where

n is a positive
the symmetry in

BH is the phase

integer which characterizes
8 of currents and fields.

shift between two successive

rings.
£ (z)e_JBZ is the current distribution across
the pleme ring.

A reasonable assumption for this distribution is that
the variation of current density across w approximates
that on an isolated narrow thin ring
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This approach was given by Sensiper in his
helical line study®.

The variation in cos n® for the current den—
sity determines the azimuthal variation of field com-
ponents
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Hankel transform

The n orderHankel transformation? € transforms
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are well suited for cylindrical coordinate system.

Field component expressions

From Maxwell's equations,we deduced the follo-
wing relations satisfied by the longitudinal compo-—
nents
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Introducing the wavenumber k
Hankel transform we obtain

w/c and using
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In the current density expression (1), the
periodic function ) f (z) given by (2) is developed in
Fourier series: P
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where I =Aw 1is the intensity of the current
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Transverse components are deduced from longitu-—
dinal components by mean of (4) and (5)

Field components are obtained by mean of in-
verse Hankel transform (4) and using the following
integral® :
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Field component expressions are (ertis omitted)
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Stored energy, power flow and dispersion relation

Expressions of :

time average magnetic stored energy per unit length
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TABLE I -

Dispersion relation, stored energy and power flow

(argument of modified Bessel functions is ama).
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WE and PZ are calculated using (6),

Dispersion relation is obtained by writbing the

equality WE = WM“

The same expression could be obtained by writ-
ting j E.J* &V = 0 because Maxwell's equation give
v
the relation
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Table I gives expression of dispersion rela-
tion, W_, W and P, Total stored energy per unit
E’. M Z
length is™:
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The dispersion relation gives the dispersion
curves satisfied by the different propagating modes of
the ring line. The analysis of this expression shows
that only one hybrid wave can propagate along the
structure for each value of n # o and the cylindrical
symmetry mode (n = o) does not exist. We see, that the
fundamental mode has dipolar symmetry. Figure 2 shows
the dispersion curve of this mode.
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Figure 2 : Dispersion characteristic for the fundamen-
tal mode.Geometrical parameters :
2a=7.05cm, H=3 cm, w= .5 cn.

Experimental points are obtained with a section
of this structure introduced between two metallic planes
to obtain a resonator. The rings are of an aluminium
alloy. Their geometrical parameters are equal to those
of figure 1 but ring thickness is 0.05 cm. Two teflon
supports hold up the rings and keep constant the period.
The experimental curve is practically identical to the
theoretical one (error is less than 0.7 %). Figure 3
showsthe variation of the stored energy and the power
flow against the phase shift RH of the fundamental mode.
Looking at figures 2 and 3, it can be noticed that
group velocity v_ = dw/df measured on dispersion curve
is equal to energy velocity PZ/W.

Conclusion

This theoretical study provides detailed know-
ledge on the propagation of electromagnetic waves in
the ring line. The Hankel transform allowed us to de-—
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termine easely field components, stored energy and
power flow. These expressions bring out the electroma—
gnetic properties of lossless open ring line. Losses
and electromagnetic energy distribution around the line
will be studied in further papers.
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Figure 3 : Theoretical power flow and theoretical
stored energy versus phase shift for the fundamental
mode. ¢ = Yeu is the light velocity and 2 = /E7E the
impedance of medium. Geometrical parameters
2a="7T.05cm, =3 cm, w= .5 cm.
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